

Utility is in the Eye of the User: A Critique of NLP Leaderboards

EMNLP 2020

Kawin Ethayarajh

Dan Jurafsky

Benchmark-based leaderboards have driven the creation of more accurate models.

Rank	Name	Model	URL	Score
1	HFL iFLYTEK	MacALBERT + DKM		90.7
2	Alibaba DAMO NLP	StructBERT + TAPT		90.6
3	PING-AN Omni-Sinitic	ALBERT + DAAF + NAS		90.6
4	ERNIE Team - Baidu	ERNIE		90.4
5	T5 Team - Google	T5		90.3
14	GLUE Human Baselines	GLUE Human Baselines		87.1

Benchmark-based leaderboards have driven the creation of more accurate models.

Rank	Name	Model	URL	Score
3	GLUE	PING-AN Omni-Sinitic	decaNLP	90.6
14	SuperGLUE	GLUE Human Baselines	XTREME	87.1

But this has been at the expense of other qualities that the NLP community cares about.

size?

fairness?

training time?

inference latency?

energy efficiency?

ease of use?

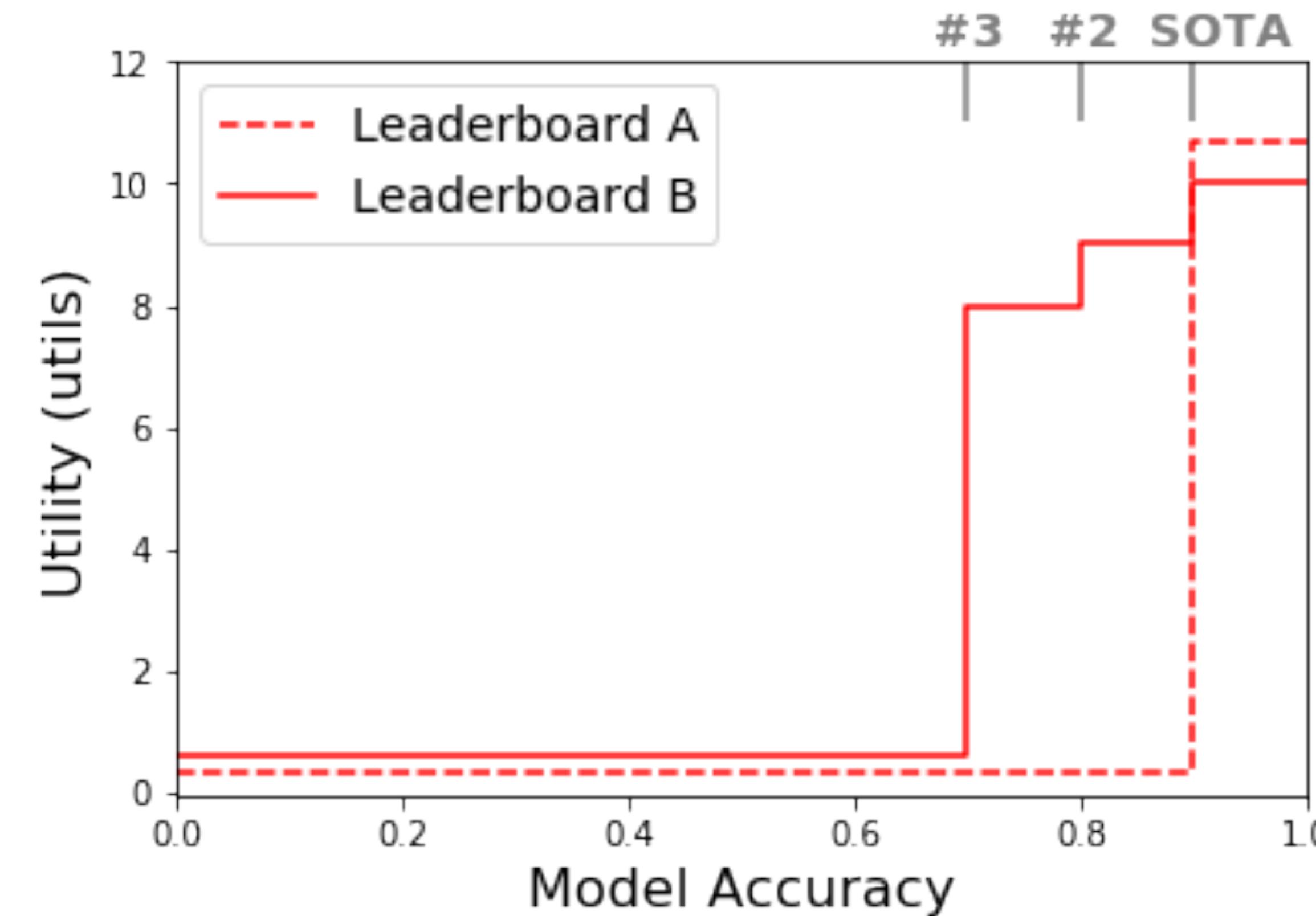
How to frame the divergence between what's incentivized by leaderboards and what's valued by practitioners?

- Microeconomics!
- The *utility* of a good is the satisfaction that a *consumer* receives from it.
- Both leaderboards and practitioners are consumers of models.
- Each consumer has a unique *utility function*.

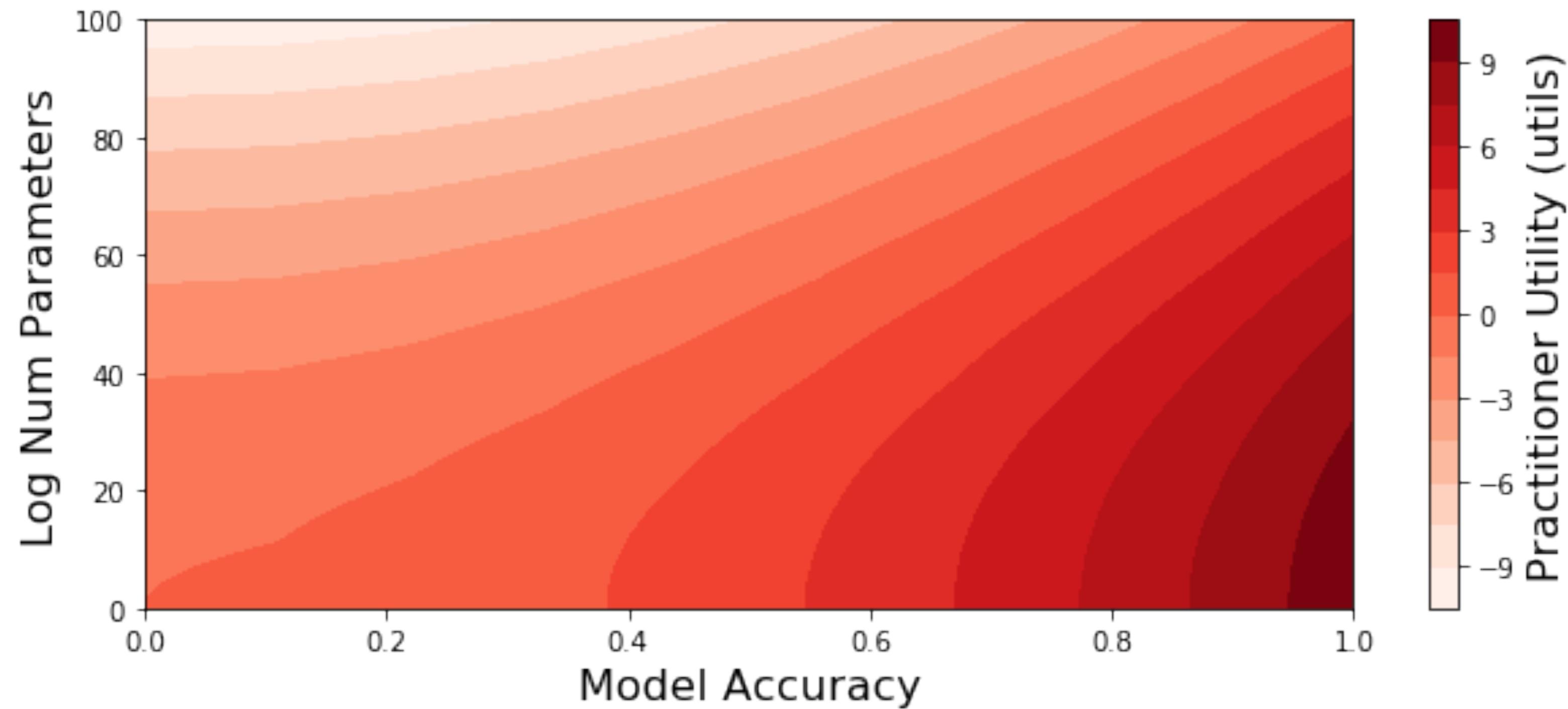
How to frame the divergence between what's incentivized by leaderboards and what's valued by practitioners?

- Microeconomics!
- The *utility* of a good is the satisfaction that a *consumer* receives from it.
- Both leaderboards and practitioners are consumers of models.
- Each consumer has a unique *utility function*.
- **IDEA:** Compare leaderboards and practitioners using their utility functions.

A leaderboard is a consumer whose preferences are perfectly revealed through its rankings: SOTA > #2 > ...



Practitioners derive utility from multiple properties of the model being consumed (e.g., accuracy, efficiency, latency).

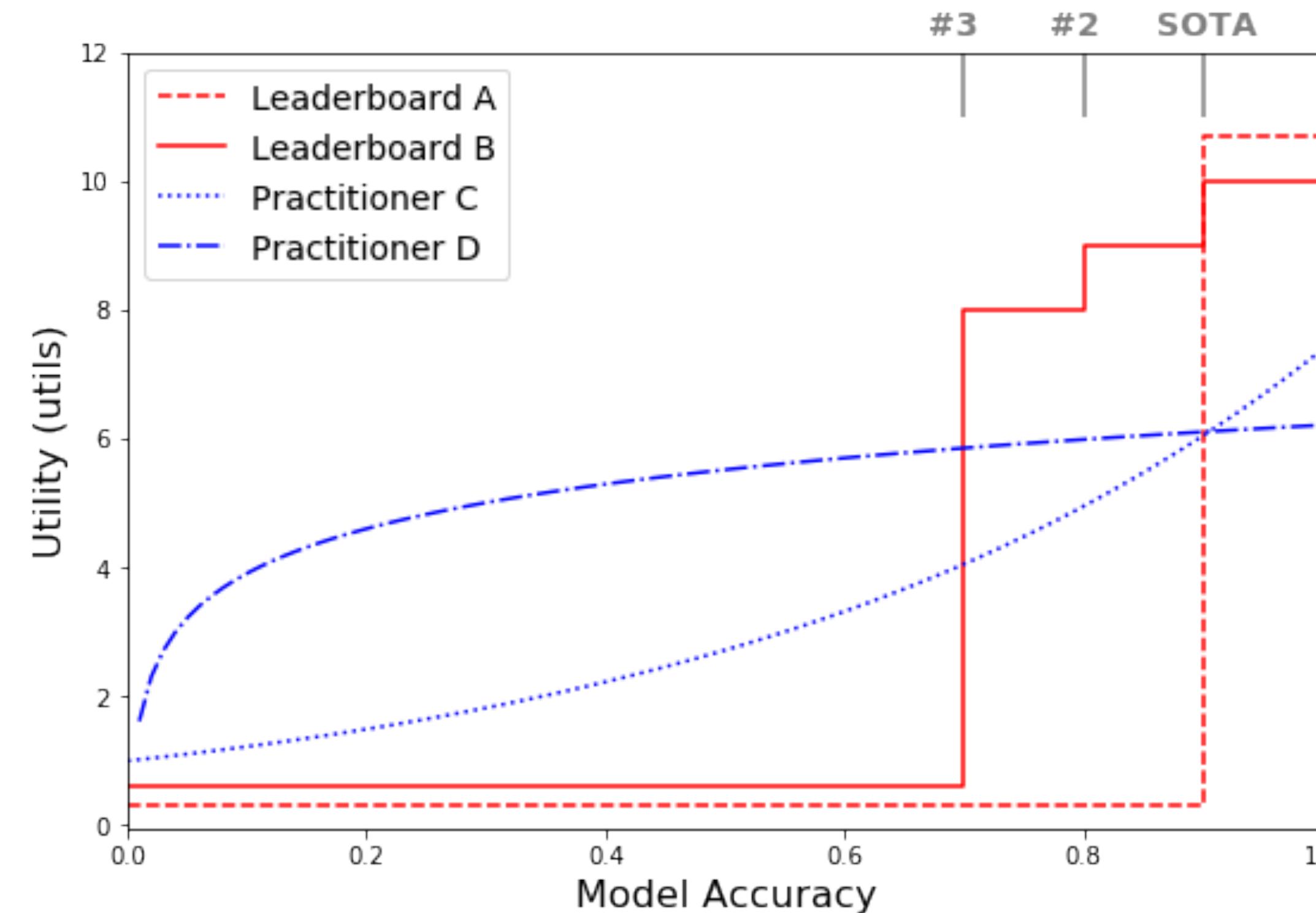


We can formally critique leaderboards by contrasting their utility functions with practitioners'.

- We don't know the exact shapes of utility functions, but we *do* know their properties: monotonicity, (in)sensitivity to certain attributes, etc.
- *Most* critiques apply to *most* leaderboards, but not all: StereoSet ranks by fairness; SNLI reports model size, etc.

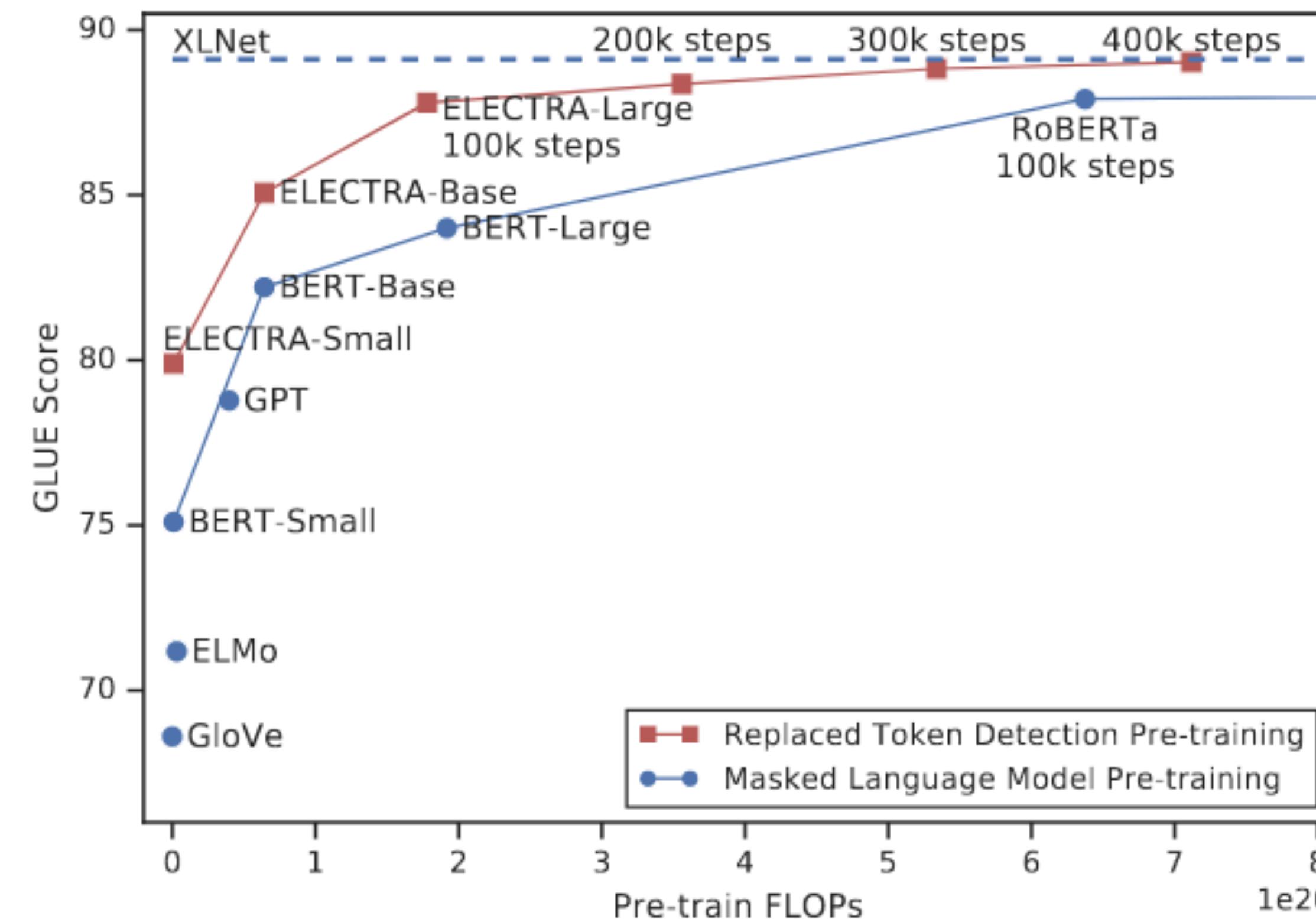
Critique #1: Non-Smoothness of Utility

- Leaderboards only gain utility from increased accuracy when it improves rank.
- The utility of practitioners is smooth with respect to accuracy.



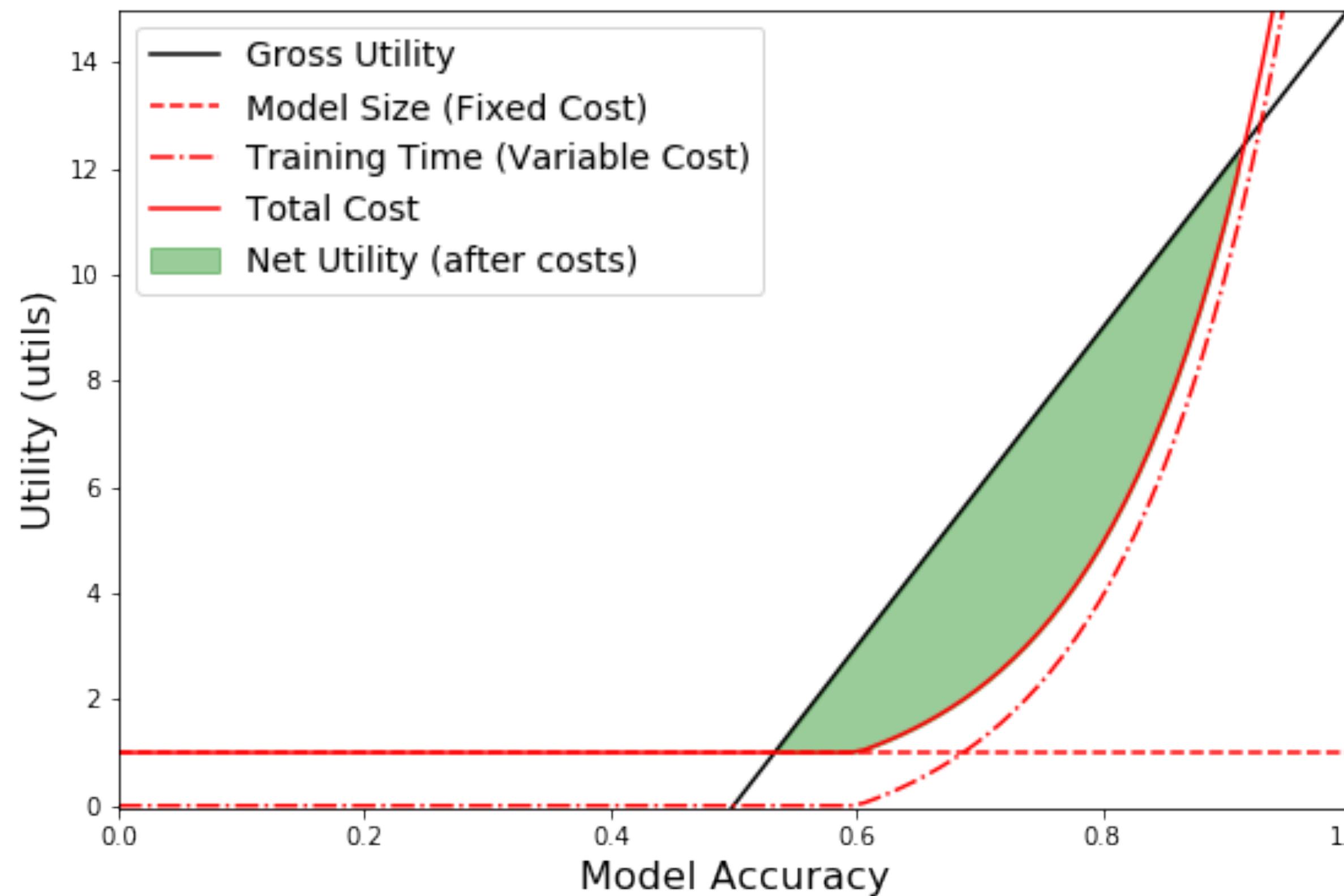
Critique #1: Non-Smoothness of Utility

- Practitioners who are content with less-than-SOTA – e.g., for low latency or Green AI – are under-served; those who want competitive-with-SOTA are over-served.



Critique #2: Cost-Ignorance

- Leaderboards rank by prediction *value*: accuracy, F1 score, exact match rate, etc.
- They ignore prediction *costs*: size, latency, energy efficiency, training time, etc.



Critique #2: Cost-Ignorance

- Practitioners can't afford to be cost-ignorant (especially the poorly-resourced)!
- Cost-sensitive rankings would
 - incentivize the creation of low-cost models like ELECTRA
 - allow practitioners to better estimate model utility

Critique #3: Robustness

- Over-fitting via resubmission is possible, even on private test sets.
- Most practitioners – but not most leaderboards – would gain utility from
 - robustness to adversarial examples
 - generalization to OOD data
 - Rawlsian fairness

Critique #3: Robustness

- This problem is being actively tackled:

Winogender Schemas

Winogender Schemas (inspired by [Winograd Schema](#)) are a set of pronoun in the sentence, designed to test for the pronoun's referent. The sentence template has three mentions: an `OCCUPATION` (either `OCCUPATION` or `PRONOUN`), an `AGENT` (either `AGENT` or `PRONOUN`), and a `PATIENT` (either `PATIENT` or `PRONOUN`). Here are two examples of the schema:

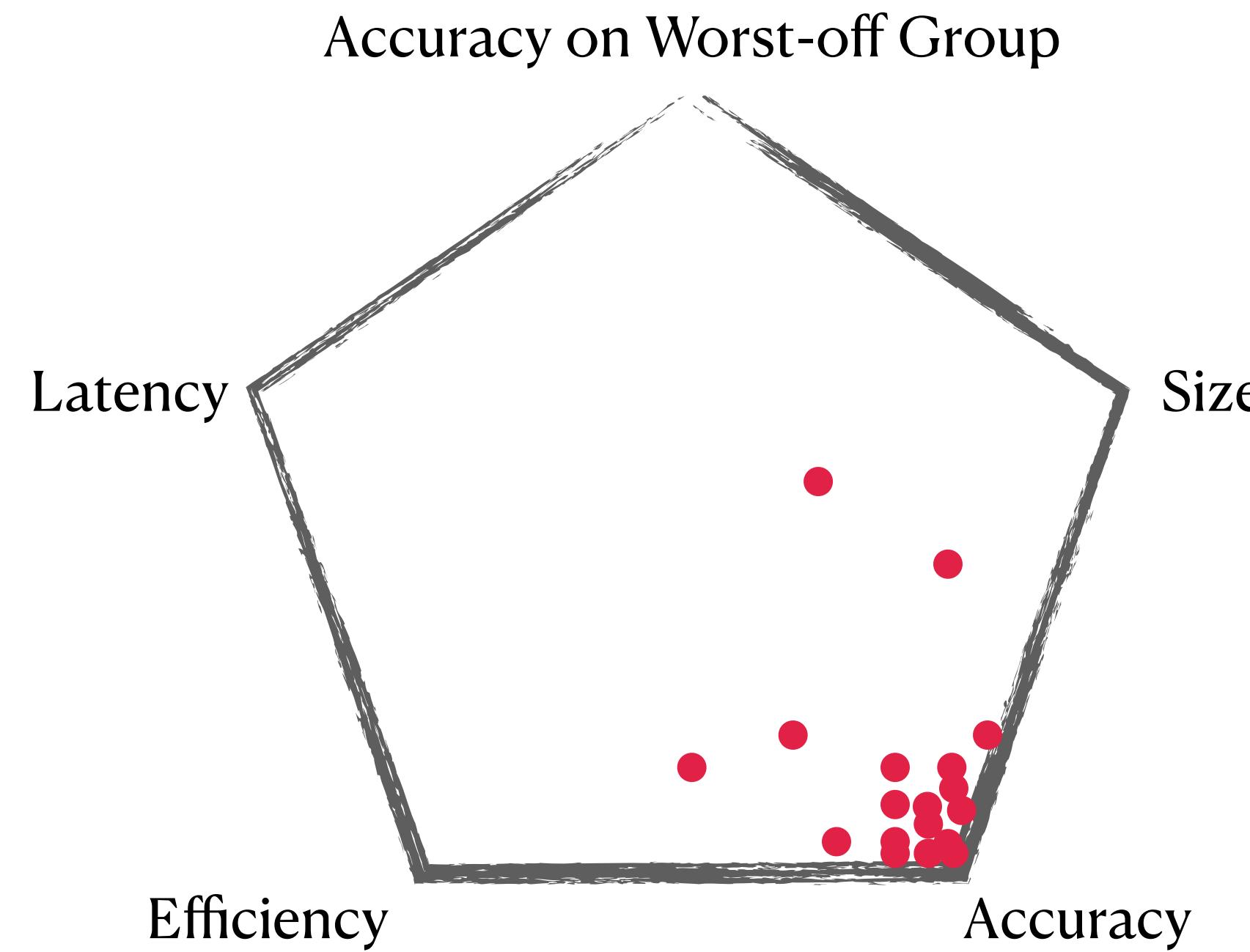
1. **The nurse** notified the patient that...
 - i. **her** shift would be ending in an hour.
 - ii. **his** shift would be ending in an hour.
 - iii. **their** shift would be ending in an hour.

The Future of Leaderboards: One for Every User

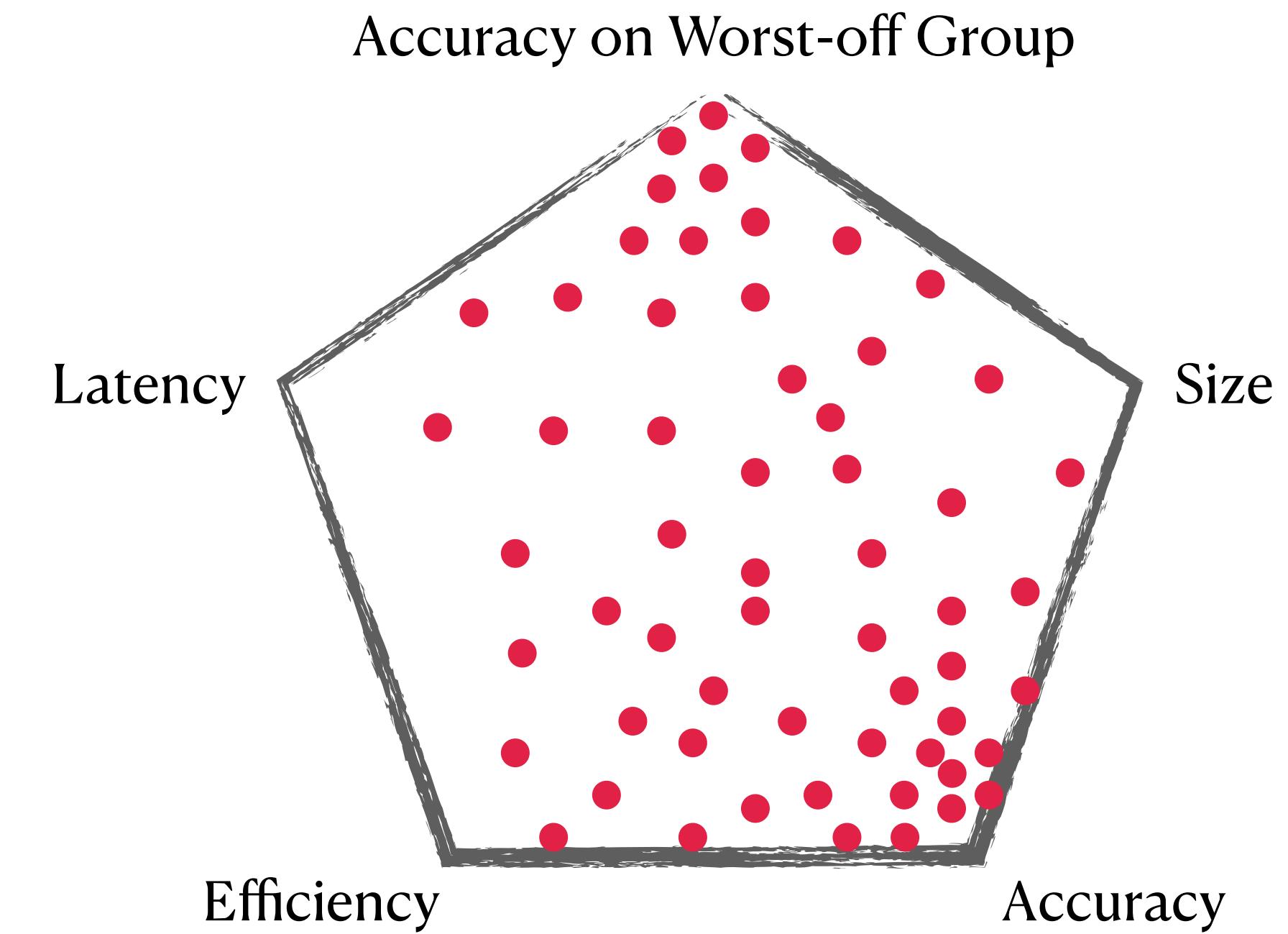
- Every practitioner has a unique utility function – no one-size-fits-all leaderboard.
- Leaderboards should demand transparency: require the reporting of metrics that are of practical concern (e.g., training time, model size, etc).
- Allow users to dynamically re-rank models based on their priorities over these statistics (i.e., align leaderboard's utility with their own).

Diverse Preferences, Diverse Models

2020



A More Enlightened Age



Thank you!