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Abstract

Estimating the difficulty of a dataset typically
involves comparing state-of-the-art models to
humans; the bigger the performance gap, the
harder the dataset is said to be. Not only is
this framework informal, but it also provides
little understanding of how difficult each in-
stance is, or what attributes make it difficult for
a given model. To address these problems, we
propose an information-theoretic perspective,
framing dataset difficulty as the absence of us-
able information. Measuring usable informa-
tion is as easy as measuring performance, but
has certain theoretical advantages. While the
latter only allows us to compare different mod-
els w.r.t the same dataset, the former also al-
lows us to compare different datasets w.r.t the
same model. We then introduce pointwise V-
information (PVI) for measuring the difficulty
of individual instances, where instances with
higher PVI are easier for model V . By manip-
ulating the input before measuring usable in-
formation, we can understand why a dataset is
easy or difficult for a given model, which we
use to discover annotation artefacts in widely-
used benchmarks.

1 Introduction

Despite datasets being the means by which we track
progress in modeling, many bear limited semblance
to the real-world tasks they purport to reflect (Tor-
ralba and Efros, 2011; Recht et al., 2019). Any
analysis of a dataset should involve a measurement
of dataset difficulty with respect to the models be-
ing evaluated, yet this relationship has not been
well formalized. In fact, estimating difficulty has
typically been limited to comparing state-of-the-art
models to humans; the bigger the performance gap,
the harder the dataset is said to be (Ethayarajh and
Jurafsky, 2020). Existing approaches to difficulty
estimation provide little understanding of how dif-
ficult each instance is (Vodrahalli et al., 2018), or
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Figure 1: The Stanford NLI dataset contains more
BERT-usable information than MultiNLI and CoLA,
making it easier for BERT. Above, the distribution
of instance difficulty (PVI) in the held-out sets w.r.t.
BERT-base. The dotted lines denote the average PVI.

what attributes make the dataset easy or difficult
for a given model (Ribeiro et al., 2016).

Heuristics such as vocabulary (Bengio et al.,
2009) and input length (Spitkovsky et al., 2010;
Gururangan et al., 2018) have sometimes been
used as proxies for instance difficulty. However,
being model-agnostic, they offer limited insight.
Estimates relying on model training dynamics
(Swayamdipta et al., 2020; Toneva et al., 2018),
gradient magnitudes (Vodrahalli et al., 2018), or
loss magnitudes (Han et al., 2018) are sensitive to
factors such as variance due to initial parameteri-
zation. Other work has treated instance difficulty
as learned parameters, allowing estimates to vary
depending on what the generative process and pa-
rameter distributions are assumed to be (Lalor et al.,
2018; Rodriguez et al., 2021). Moreover, these
prior approaches do not formally relate dataset dif-
ficulty to the model being evaluated.

In this work, we provide a formal, information-
theoretic treatment of dataset difficulty by framing
it as the absence of usable information for a model
(§2). For example, consider a model family V that
can learn to map a sentence X with its sentiment



Y . If we encrypted X , predicting the sentiment
would be a lot more difficult for V . But why? The
information X contains about Y would not be re-
moved; the Shannon mutual information I(X;Y )
would be unchanged (Shannon, 1948). Intuitively,
the task is easier when X is unencrypted because
the information it contains is usable by V; when
X is encrypted, the information still exists but be-
comes unusable. This quantity—usable informa-
tion—reflects the ease of predicting Y given X
using V , as proposed by Xu et al. (2019). It can
be measured using the predictive V-information
framework, which generalizes Shannon informa-
tion to consider computational constraints. The
higher the V-information IV(X → Y ), the easier
the dataset is for V .

Measuring usable information has theoretical ad-
vantages over measuring model performance. Ac-
curacy allows us to compare different models w.r.t.
the same dataset, but not different datasets w.r.t.
the same model. In contrast, V-information per-
mits such comparisons. In Figure 1, we can see
that even datasets for the same task, i.e. natural
language inference, contain different amounts of
BERT-usable information, as shown in the plots
for SNLI (Bowman et al., 2015) and MultiNLI
(Williams et al., 2018).

We then introduce a new measure called point-
wise V-information (PVI) for estimating the diffi-
culty of each instance in a dataset, where higher
PVI instances are easier for V (§3). On datasets con-
taining more information usable by large language
models, such as SNLI, PVI estimates are highly
correlated (Pearson r > 0.75) across different mod-
els, seeds, and training time. On datasets with less
usable information, such as CoLA (Warstadt et al.,
2018), these correlations are weaker (0.05 ≤ r ≤
0.55)—this is intuitive, since if X and Y were in-
dependent (i.e., there were no usable information),
the correlation would tend to zero.

By transforming X to isolate an attribute a be-
fore calculating IV(Xa → Y ), we can also under-
stand why the dataset is easy or difficult for V (§4).
For example, by shuffling the tokens in X , we can
estimate how much usable information the token
identity contains about Y . Using this method, we
provide several insights:

• Some attributes are more useful for certain
classes. For example, in SNLI, the hypothesis-
premise overlap is only useful for predicting
‘entailment’ instances.

• Annotation artefacts can be identified by the
change in V-information upon dropping to-
kens. In CoLA, auxiliary verbs and preposi-
tions are artefacts of non-grammaticality.

• In a popular dataset for hate speech detection
(Davidson et al., 2017), just 50 (potentially)
offensive words contain most of the BERT-
usable information about the label.

Our insights into dataset difficulty promise to offer
a truer picture of the progress in natural language
understanding. Moreover, a careful investigation
of dataset difficulty opens up avenues for creating
richer resources of data (§6).

2 The Absence of Usable Information

2.1 Theory
Consider a model family V , which can be trained to
map text inputX to its label Y . If we encrypted the
text, it would be harder to predict Y given X using
the same V . How might we measure this increase
in difficulty? Shannon and Weaver (1949)’s mutual
information I(X;Y ) is not an option—it would
not change after X is encrypted, as it allows for un-
bounded computation, including any computation
needed to decrypt the text.

Intuitively, the task is easier when X is unen-
crypted because the information it contains is us-
able by V; when X is encrypted, this information
still exists but becomes unusable. By measuring
this quantity—usable information—we can thus
measure the difficulty of a dataset w.r.t. V . Usable
information can be measured under a framework
called predictive V-information, which general-
izes Shannon information to measure how much
information can be extracted fromX about Y when
constrained to functions V , written as IV(X → Y )
(Xu et al., 2019). The greater IV(X → Y ), the
easier the dataset is for V . If V is the set of all
functions—i.e., unbounded computation—then V-
information reduces to Shannon information.

Processing the input with τ (e.g., by decrypt-
ing the text) can make prediction easier, allowing
IV(τ(X) → Y ) ≥ IV(X → Y ). Although this
violates the data processing inequality, it explains
the usefulness of certain types of processing, such
as representation learning. Compared to X , the
learned representations cannot have more Shannon
information with Y , but they can have more usable
information. As defined in Xu et al. (2019):

Definition 2.1 (Predictive V-Entropy) Let X,Y
denote random variables with sample spaces X ,Y



respectively. Let ∅ denote a null input that provides
no information about Y . Given predictive family
V ⊆ Ω = {f : X ∪∅→ P (Y)}, the V-entropy is

HV(Y ) = inf
f∈V

E[− log f [∅](Y )] (1)

and the conditional V-entropy is

HV(Y |X) = inf
f∈V

E[− log f [X](Y )] (2)

Put simply, f [X] and f [∅] produce a probability
distribution over the labels. The goal is to find
the f ∈ V that maximizes the log-likelihood of
the label data with (2) and without (1) the input.
f [∅] models the label entropy, so ∅ can be set to
an empty string for most NLP tasks. Although
predictive family has a technical definition1, state-
of-the-art NLP models, provided they are finetuned
without any frozen parameters, easily meet this
definition2. Further, as per Xu et al. (2019):

Definition 2.2 (Predictive V-Information) Let
X and Y denote random variables with sample
spaces X and Y , respectively. Given a predictive
family V , the V-information is

IV(X → Y ) = HV(Y )−HV(Y |X) (3)

Because we are estimating this quantity on a finite
dataset, the estimate can differ from the true V-
information. Xu et al. (2019) provide PAC bounds
for this error, where less complex V and larger
datasets yield tighter bounds. Xu et al. (2019) also
list several useful properties of V-information:

Proposition 2.1 LetX and Y denote random vari-
ables with sample spaces X and Y , respectively.
Given predictive families U and V:

1. IV(X → Y ) ≥ 0
2. If X is independent of Y , IV(X → Y ) = 0.
3. If U ⊆ V , then HU (Y ) ≥ HV(Y ) and
HU (Y |X) ≥ HV(Y |X).

2.2 Implications
V-information allows us to compare

i. different models (i.e., different V) by comput-
ing IV(X → Y ) for the same X,Y (Fig. 2),

ii. different datasets {(x, y)} by computing
IV(X → Y ) for the same V (Fig. 1), and

1We refer the reader to Xu et al. (2019) for details.
2Not all models produce an explicit distribution over the

output space (e.g., language generation models). Estimating
V-information would then require some assumptions about
the task, which we will explore in future work.

iii. different input variables Xi by computing
IV(Xi → Y ) for the same V and Y (Fig. 5).

Measuring usable information has many theoreti-
cal advantages over measuring performance while
being almost as easy to compute.

Easy-to-Calculate: Given that training a model
with cross-entropy loss finds the f ∈ V that maxi-
mizes the log-likelihood of Y given X , HV(Y |X)
can be easily computed by standard training or by
finetuning a pre-trained model (as long as the in-
fimum is found, it doesn’t matter). We estimate
HV(Y |X) by calculating E[− log f [X](Y )] on an
identically distributed held-out set,3 Recall that Y
is not the label predicted by the finetuned model,
but rather the gold label. Analogously, we estimate
HV(Y ) by training or finetuning, but with ∅ in
place of X . It is important however not to maxi-
mize the log-likelihood of the training instances to
the point of over-fitting, since we ultimately care
about finding the infimum over the full data distri-
bution, not just the training set. This also means
that it is not appropriate to use V-information to
estimate the difficulty of out-of-distribution data.

Standardized Comparisons: Common classifi-
cation metrics, such as accuracy or F1 score, al-
low us to compare different models w.r.t the same
dataset, but not different datasets w.r.t. the same
model. The usable information for every dataset
is measured in bits/nats (depending on the log
base), allowing for comparisons across models and
datasets. Additionally, consider the case where
X and Y are independent: here, model accuracy
would be no greater than the majority class fre-
quency, but this frequency varies across datasets.
More generally, datasets with lower label entropy
are easier to predict, all else held constant. V-
information avoids this problem by factoring in
the label entropy HV(Y ); if X,Y are independent,
then the V-information is zero (Proposition 2.1).

Efficient Comparisons: Say we wish to com-
pare two predictive families, V and U , such that
U ⊆ V . Assuming both families can model the la-
bel distribution, the larger family can extract more
usable information (Proposition 2.1), making the
dataset at least as easy for V as for U . This prov-
ably obviates the need to evaluate simpler function

3In our experiments, we use a test set whenever available.
In practice, however, any identically distributed held-out set
should suffice.



Figure 2: The usable information the input contains about SNLI (gold-standard) labels, w.r.t. various models. In
the first three epochs, the V-information estimates on the test set are similar across all models (top right), but due
to over-fitting, the estimates diverge and decline by epoch 10. The test accuracy (bottom right) for each model
tracks the V-information for that model, since extracting more information makes prediction easier.

families (e.g., linear functions) when estimating
dataset difficulty.

2.3 Applying V-Information
We apply the V-Information framework to estimate
the difficulty of the Stanford natural language infer-
ence dataset (SNLI; Bowman et al., 2015), across
different state-of-the-art models. SNLI is a large-
scale dataset for predicting whether a text hypothe-
sis entails, contradicts or is neutral to a text premise.
The four models we use are GPT2-small (Radford
et al., 2019), BERT-base-cased (Devlin et al., 2019),
DistilBERT-base-uncased (Sanh et al., 2019), and
BART-base (Lewis et al., 2020). Figure 2 shows
the V-information estimate for all four, as well as
their accuracy on the SNLI train and held-out (test)
sets, across 10 training epochs.

Model performance track V-information. As
seen in the right column of Figure 2, at each epoch,
the model with the most V-information on the
SNLI test set is also the most accurate. The rel-
ative ordering of models also remains consistent
across epochs. This is intuitive, since extracting
more information makes prediction easier. Overall,
BART-base extracts the most V-information, fol-
lowed by BERT-base, DistilBERT-base, and GPT2-
small.

Figure 2 also shows why V-information should,
when possible, be estimated on a held-out set in-
stead of the same data used for training or finetun-
ing the model. As the model overfits to the training
data, the amount of usable information in the train-

ing set grows at the expense of usable information
in the test set. Ultimately, we want to maximize the
log-likelihood of the random variable Y given X ,
not just the specific instances in the training data.
Finetuning and estimating V-information on the
same set of examples thus risks the estimate being
further from the true V-information (as calculated
over the actual distribution P (X,Y )).

V-information is more sensitive to over-fitting
than held-out performance. At epoch 10, the V-
information is at its lowest for all models, although
the SNLI test accuracy has only declined slightly
from its peak. This is because the models start
becoming less certain about the correct label long
before they start predicting the wrong label. This
causesHV(Y |X) to rise—and thus IV(X → Y ) to
decline—even while most of the probability mass is
still placed on the correct label. This suggests that,
compared to performance metrics, V-information
can more readily inform us of over-fitting.

3 Measuring Pointwise Difficulty

While V-information provides an aggregate mea-
sure of dataset difficulty (§2), a closer analysis
requires measuring the degree of usable informa-
tion in individual instances. We extend the V-
information framework to introduce a new measure
called pointwise V-information (PVI) for individ-
ual instances. The higher the PVI, the easier the
instance is for V .

Definition 3.1 (Pointwise V-Information)



Figure 3: The normalized distribution of PVI values
(w.r.t. BERT-base) for correctly and incorrectly pre-
dicted instances in CoLA, SNLI, and MultiNLI. The
higher the PVI, the more likely an instance is to be pre-
dicted correctly by BERT.

Given random variables X,Y and a predictive
family V , the pointwise V-information (PVI) of an
instance (x, y) is

PVI(x→ y) = − log2 g[∅](y) + log2 g
′[x](y)

(4)
where g, g′ ∈ V , E[− log g[∅](Y )] = HV(Y ) and
E[− log g′[X](Y )] = HV(Y |X).

If V were the BERT function family, g′ and g would
be the BERT models after finetuning on the training
data with and without the input respectively. For a
held-out instance (x, y), PVI(x→ y) is the differ-
ence in the log-probability these finetuned models
place on the gold label. PVI is to V-information
what PMI is to Shannon information:

I(X;Y ) = Ex,y∼P (X,Y )[PMI(x, y)]

IV(X → Y ) = Ex,y∼P (X,Y )[PVI(x→ y)]
(5)

Because of this relationship, our understanding of
V-information extends to PVI as well: higher PVI

instances are easier for V; lower PVI instances are
more difficult. In Algorithm 1, we describe how
the V-information can be computed explicitly using
the V-entropies or by averaging over PVI.

The PVI of an instance (x, y) w.r.t. V should only
depend on the distribution of the random variables.
Sampling more from P (X,Y ) during finetuning
should not change PVI(x→ y) much. However, an
instance can be drawn from different distributions,
in which case we would expect its PVI to differ. For

Algorithm 1 PVI and V-Information
Input: training data Dtrain = {(input xi, gold label yi)}mi=1,
held-out dataDtest = {(input xi, gold label yi)}ni=1, model V
do

g′ ← Finetune V on Dtrain
∅← empty string (null input)
g ← Finetune V on {(∅, yi) | (xi, yi) ∈ Dtrain}

HV(Y ), HV(Y |X)← 0, 0
for (xi, yi) ∈ Dtest do

HV(Y )← HV(Y )− 1
n
log2 g[∅](yi)

HV(Y |X)← HV(Y |X)− 1
n
log2 g

′[xi](yi)
PVI(xi → yi)← − log2 g[∅](yi) + log2 g

′[xi](yi)
end for

V-Information ÎV(X → Y ) = 1
n

∑
i PVI(xi → yi)

= HV(Y )−HV(Y |X)

end do

example, say we have restaurant reviews and movie
reviews, along with their sentiment. The instance
(‘That was great!’, positive) could be drawn from
either distribution, but we would expect its PVI to
be different in each (even though V is the same).

3.1 Applying PVI

We apply PVI to two datasets in addition to SNLI:
MultiNLI (Williams et al., 2018) is a multi-genre
counterpart of SNLI, and CoLA (Warstadt et al.,
2018) is a dataset for linguistic acceptability where
each sentence is labeled as grammatical or not. We
summarize key findings below.

Correctly predicted instances have higher PVI
values than incorrectly predicted ones. In Fig-
ure 3, we plot the normalized distribution of PVI

values for CoLA, SNLI, and MultiNLI held-out
examples that were correctly and incorrectly pre-
dicted by fully fine-tuned BERT-base. A higher PVI

increases the odds of being predicted correctly—
this is intuitive because a correct prediction of a
non-majority-class instance requires that some in-
formation be extracted from the instance. Although
the V-information cannot be negative (Proposition
2.1), the PVI can be—much like how PMI can be
negative even though Shannon information cannot.
A negative PVI simply means that the model is
better off predicting the majority class than con-
sidering X , which can happen for many reasons
(e.g., mislabelling). As seen in Figure 3, examples
with negative PVI can still be predicted correctly,
as long as g′ places most of the probability mass
on the correct label.

Instances with a lower rate of annotator agree-
ment have a lower PVI on average. In Figure 4,



Figure 4: The average PVI for SNLI instances grouped
by the level of annotator agreement (e.g., [0.9, 1.0]
means that 90-100% of the annotators agreed with the
gold label). The lower the annotator agreement, the
lower the average PVI, suggesting a correspondence be-
tween what humans and models find difficult.

we group the SNLI test instances by the level of
annotator agreement—the proportion of annotators
who agree with the gold label—and plot the aver-
age PVI for each group. There is a consistent trend
across all four models we evaluated: the lower the
annotator agreement, the lower the average PVI.
This suggests a strong correspondence between
what humans and models find difficult.

When there is much usable information, PVI
estimates are highly consistent across models,
training epochs, and random initializations.
In Table 1, we can see that the cross-model Pear-
son correlation between PVI estimates of SNLI in-
stances is very high (r > 0.80). However, this result
does not extend to all datasets: as seen in Table 1,
the cross-model Pearson correlation is much lower
for CoLA (0.05 < r < 0.55). This is because, as
visualized in Figure 1, CoLA has much less usable
information, making difficulty estimates noisier. In
the limit, if a dataset contained no usable informa-
tion, then we would expect the correlation between
PVI estimates across different models and seeds to
be close to zero.

It is also worth noting, however, that a high de-
gree of cross-model correlation—as with SNLI—
does not preclude comparisons between different
models on the same dataset. Rather, it suggests
that in SNLI, a minority of instances is responsible
for distinguishing one model’s performance from
another. This is not surprising—given the similar
complexity and architecture of these models, we
would expect most instances to be equally easy.

For all models finetuned on SNLI, the Pearson
correlation (between PVI estimates made by the

SNLI

DistilBERT GPT2 BERT BART

DistilBERT 1.000 0.821 0.846 0.815
GPT2 0.821 1.000 0.809 0.822
BERT 0.846 0.809 1.000 0.832
BART 0.815 0.822 0.832 1.000

CoLA

DistilBERT GPT2 BERT BART

DistilBERT 1.000 0.294 0.515 0.476
GPT2 0.294 1.000 0.138 0.086
BERT 0.515 0.138 1.000 0.248
BART 0.476 0.086 0.248 1.000

Table 1: Cross-model Pearson’s r between PVI esti-
mates made by different finetuned models, on the SNLI
and CoLA test sets. For SNLI, the estimates are consis-
tent: what one model finds difficult, others find difficult
as well. Since CoLA has less usable information for
all these models, the correlations are much lower. If a
dataset had no usable information, we would expect the
correlation to be close to zero.

same model) across training epochs is above 0.80
during the first five epochs (Appendix C). Also, de-
spite the performance of Transformer-based models
varying across random initializations (Dodge et al.,
2019, 2020; Mosbach et al., 2020), we find that PVI

estimates are quite stable: the correlation across
seeds is r > 0.85 (for SNLI finetuned BERT-base,
across 4 seeds). In other words, SNLI examples
that are more (less) difficult in one setting tend to
remain more (less) difficult across models, training
time, and seeds.

4 Uncovering Dataset Artefacts

A key limitation of past work on estimating data
difficulty is the lack of interpretability; there is no
straightforward way to understand why a dataset
is as difficult as it is. Readers may however recall
from §2.2 that V-information offers an approach
to compare different input variables Xi under the
same V and Y .

In this section, we apply different transforma-
tions τa(X) to isolate an attribute a and then cal-
culate IV(τa(X) → Y ) to measure how much
information (usable by V) the attribute contains
about the label. For example, by shuffling the
tokens in X , we can isolate the influence of to-
ken identity. Given that a transformation may
make information more accessible (e.g., decrypt-
ing some encrypted text; c.f. §2), it is possible for
IV(τa(X) → Y ) ≥ IV(X → Y ), so the latter



Figure 5: The amount of usable information for four models contained in different input attributes about the (gold-
standard) labels in SNLI. The TOKEN IDENTITY alone (regardless of order) provides most of the information for
all models. The PREMISE, which can be shared by multiple instances, is useless alone; the HYPOTHESIS, which is
unique to an instance, is quite useful even without a premise, suggesting it may contain annotation artefacts. Note
that different attributes can contain overlapping information.

shouldn’t be treated as an upper bound. Such trans-
formations were applied by O’Connor and Andreas
(2021) to understand what syntactic features Trans-
formers use in next-token prediction; we take this
a step further, aiming to discover annotation arte-
facts, compare individual instances, and ultimately
understand the dataset itself. We present below key
findings on SNLI as well as DWMW17 (Davidson
et al., 2017), a dataset for hate speech detection,
where input posts are labeled as hate speech, offen-
sive, or neither.

Token identity alone provides most of the us-
able information in SNLI. We apply various
transformations to the SNLI input to isolate dif-
ferent attributes (see Appendix B for an example):

Token Identity: shuffle tokens randomly
Length: replace each token with token #
Hypothesis: only include the hypothesis
Premise: only include the premise
Overlap: only include tokens in the hypothesis

that also appear in the premise
As seen in Figure 5, the token identity alone con-
tains most of the usable information for all models.
The premise, which is typically shared by multiple
instances, is useless alone; the hypothesis, which is
unique to an instance, is quite useful even without
a premise, hinting at annotation artefacts.

Certain attributes are more useful for certain
classes. Comparing the usefulness of an attribute
across classes can be useful for identifying sys-
temic annotation artefacts: we do this for SNLI in
Table 2. For example, we see that the hypothesis-
premise overlap contains much more BERT-usable
information about the ‘entailment’ class than ‘con-
tradiction’ or ‘neutral’. If there is no inherent rea-

Entailment Neutral Contradiction

original 1.188 1.064 1.309
length 0.085 -0.074 -0.014
token identity 1.130 0.984 1.224
hypothesis 0.573 0.553 0.585
premise 0.032 -0.016 -0.016
overlap 0.271 0.049 0.224

Table 2: The average amount of usable information
(i.e., mean PVI, in bits) that each attribute contains
about each class in SNLI, according to BERT-base.
Some attributes are more useful for a particular class:
e.g., the degree of premise-hypothesis overlap is most
useful for predicting ‘entailment’. Note that the mean
PVI for a particular class is different from the V-
information, as the latter is the mean over all the data.

son for an attribute to be more/less useful—such as
overlap for entailment—there may be an artefact at
work. Conversely, although input length is a known
annotation artefact—with entailment instances be-
ing shorter than average in SNLI and neutral in-
stances being longer (Gururangan et al., 2018)—all
models mostly fail to exploit this artefact. This is
likely due to the inability of Transformer-based ar-
chitectures to count and compare numbers (Wallace
et al., 2019).

Certain attributes are responsible for the diffi-
culty of certain examples. Figure 6 is an exam-
ple of how we might do a fine-grained compari-
son of instances to understand why one may be
more difficult for a given model. We compare
two SNLI ‘neutral’ instances from the test set to
try to understand why #9627 is easier for BERT
than #7717 (i.e., why PVI(x9627 → y9627) >
PVI(x7717 → y7717)), finding that it is likely due
to the former’s hypothesis being more informa-



#7717: PREMISE: Little kids play a game of running around a pole. HYPOTHESIS: The kids are fighting outside.
#9627: PREMISE: A group of people watching a boy getting interviewed by a man. HYPOTHESIS: A group of people are
sleeping on Pluto.

Figure 6: The PVI of two SNLI ‘neutral’ instances (#7717 and #9627) w.r.t. BERT-base after attribute-specific
transformations, as well as the V-information estimate (i.e., average PVI over the data) for each attribute. The latter
instance is easier for BERT, likely because its hypothesis is much more informative due to being so different from
its premise. Note that it makes sense to compare instances w.r.t. the same attribute, but not different attributes w.r.t.
the same instance, since the models used to estimate the attribute V-information IV(τa(X) → Y ) are chosen to
maximize the likelihood of all the data.

tive. While different instances can be compared
w.r.t. the same attribute, different attributes can-
not be compared w.r.t. the same instance, since
the models used to estimate the attribute-specific
V-information IV(τa(X)→ Y ) are chosen to max-
imize the likelihood of all the data. This is why,
for example, the PVI of #7717 is higher after its
tokens have been shuffled even though the aver-
age PVI (i.e., dataset-level V-information) declines
after shuffling tokens.

Hate speech detection datasets may be easier
than they seem. Automatic hate speech detec-
tion is an increasingly important part of online mod-
eration, but what causes a model to label speech as
offensive? We find that DWMW17 contains 0.724
bits of BERT-usable information. Additionally, if
one removed all the tokens, except for 50 (poten-
tially) offensive ones—comprising mostly of com-
mon racial and homophobic slurs–from the input
post, there still remains 0.490 bits of BERT-usable
information. In other words, just 50 (potentially)
offensive words contain most of the BERT-usable
information in DWMW17. Allowing models to
do well by simply pattern-matching may permit
more subtle forms of hate speech to go undetected,
perpetuating harm towards minority groups.

Token-level annotation artefacts can be discov-
ered using leave-one-out. Transforming X and
then measuring the V-information to discover
token-level artefacts is untenable, since we would
need to finetune one new model per token. Instead,
we compute the change in the V-information esti-
mate using the same model g′ but on a subset DC,t

of the data4. Let x¬t denote an input after remov-
ing t. This simplifies to measuring the increase in
conditional entropy:

1

|DC,t|
∑
DC,t

[− log2 g
′[x¬t](y) + log2 g

′[x](y)]

In CoLA, auxiliary verbs (e.g., be, did) and prepo-
sitions are artefacts of ungrammatical sentences; in
contrast, grammatical sentences have no artefacts,
with no word on average increasing the conditional
entropy above 0.30 upon omission. In DWMW17,
racial and homophobic slurs are the top indicators
of ‘hate speech’. In SNLI, many of the token-level
artefacts match those found using descriptive statis-
tics in Gururangan et al. (2018). The word lists are
available in Table 6 in Appendix D.

5 Related Work

Dataset cartography uses training dynamics to vi-
sualize datasets (Swayamdipta et al., 2020). It fol-
lows earlier work that used the training loss (Han
et al., 2018; Arazo et al., 2019; Shen and Sang-
havi, 2019), confidence (Hovy et al., 2013), predic-
tion variance (Chang et al., 2017), and area under
the curve (Pleiss et al., 2020) to differentiate in-
stances. Instances are plotted on two axes: (1) con-
fidence (i.e., mean probability of the correct label
across epochs), and (2) variability (i.e., variance of
the former); the former values per instance track
closely with PVI values, especially when there is
a high amount of usable information for a model;

4The instances which contain the token t and belong to the
class C of interest.



see Fig. 7 in Appendix E. Given their dependence
on training behavior across time, cartography of-
fers complimentary benefits to V-information. In-
deed, V-information provides a formal framework
to make dataset difficulty estimates as an aggregate,
but it is non-trivial to measure differences between,
say a CoLA data map and an SNLI data map, with
respect to BERT.

A more recent line of work allows the difficulty
of instances to be learned via item response theory
(IRT) (Embretson and Reise, 2013). Instance “dif-
ficulties” are treated as parameters in a topic model
meant to explain model performance (Rodriguez
et al., 2021). With IRT, however, estimates can
vary depending on the generative process assumed
by the topic model and the assumed parameter dis-
tributions. Because this method does not consider
the input text—only whether a model’s prediction
was correct—it also cannot be easily adapted to
understanding why an example is difficult.

Estimating instance difficulty is evocative of in-
stance selection for active learning (Fu et al., 2013;
Liu and Motoda, 2002). Uncertainty sampling,
for example, picks the instances that the partially
trained model is least certain about (Lewis and
Catlett, 1994; Lewis and Gale, 1994; Nigam et al.,
2000), which could be interpreted as a measure
of difficulty. However, once an instance is sam-
pled and used for training, the model may become
much more certain about it, meaning that original
uncertainty values are not stable estimates. AFLite
(Le Bras et al., 2020) is an adversarial filtering
algorithm for iteratively removing “predictable” in-
stances, where predictability is determined at each
iteration using a linear classifier. Although un-
predictability is similar to our notion of difficulty,
AFLite changes the data distribution with each it-
eration, causing the estimates to change as well.
Its iterative nature means that it is also limited to
simple models (e.g., linear classifiers).

Influence functions (Koh and Liang, 2017), for-
getting events (Toneva et al., 2018), and the Data
Shapley (Ghorbani and Zou, 2019; Jia et al., 2019)
can all be used to assign pointwise estimates of im-
portance to data instances, but importance tends to
refer to their contribution to the decision boundary.
Other work has offered insight by splitting the data
into “easy” and “hard” sets with respect to some at-
tribute and studying changes in model performance,
but these methods do not offer a pointwise estimate
of difficulty. (Sugawara et al., 2018; Rondeau and

Hazen, 2018; Sen and Saffari, 2020). In NLP, V-
information has been used to study what context
features Transformers actually use (O’Connor and
Andreas, 2021), as well as to condition out infor-
mation during probing (Hewitt et al., 2021), but not
for estimating difficulty. Our approach to discover-
ing dataset artefacts can also complement existing
approaches to artefact discovery (Gardner et al.,
2021; Pezeshkpour et al., 2021).

6 Future Work

Our findings open up many lines of future work.
There has been much work in the way of model
interpretability, but relatively little in the way of
dataset interpretability. Our framework will allow
datasets to be probed, helping us understand what
exactly we’re testing for in models and how perva-
sive annotation artefacts really are. By identifying
the attributes responsible for difficulty, it will be
possible to build challenge sets in a more princi-
pled way and reduce artefacts in existing datasets.
By studying which attributes contain information
that is non-usable by existing SOTA models, model
creators may also be able to make more precise
changes to architectures.

Although V-information is easy to calculate,
there remains a challenge in applying it to tasks
where models don’t produce an explicit probability
distribution over the entire output (e.g., machine
translation with beam search). Addressing such
cases will require breaking down text-to-text tasks
into more tractable sub-tasks.

7 Conclusion

We provided an information-theoretic perspective
of dataset difficulty by framing it as the absence
of usable information. We extended predictive
V-information to estimate difficulty at the dataset
level, and then introduced pointwise V-information
(PVI) for measuring the difficulty of individual in-
stances. Measuring V-information was found to
have a number of theoretical advantages over mea-
suring performance. For datasets with more usable
information, PVI estimates were found to be more
consistent across training time, different models,
and different seeds; for datasets with less usable in-
formation, PVI estimates are less consistent across
settings. We then demonstrated how systemic and
token-level annotation artefacts could be discov-
ered by manipulating the input before calculating
these measures. In summary, V-information offers



a new, efficient means of interpreting the quality of
large datasets, complimenting existing methods in
dataset analysis.
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A Examples

In Table 3, we list the 10 hardest instances in the
SNLI test set according to BERT-base. All three
classes—entailment, neutral, and contradiction—
are represented in this list, with entailment being
slightly over-represented. We see that some of the
examples are in fact mislabelled—e.g., ‘PREMISE:
An Asian woman dressed in a colorful outfit laugh-
ing. HYPOTHESIS: The women is not laughing.’
is labelled as ‘entailment’ even though the correct
label is ‘contradiction’.

B Transformations

In Table 4, we provide an instance from the
SNLI test set in its original form and after var-
ious attribute-specific transformations have been
applied to it. These only capture a small subset of
the space of possible transformations.

C Cross-Epoch Correlations

In Table 5, we list the cross-epoch Pearson corre-
lation between PVI estimates made by the same
model on the SNLI test set over the course of fine-
tuning. The correlation is high (r > 0.80 during
the first 5 epochs), suggesting that when an in-
stance is easy(difficult) early on, it tends to remain
easy(difficult).

D Token-Level Artefacts

WARNING: The following content contains lan-
guage from the DWMW17 dataset that is offensive
in nature. In Table 6, we list the tokens in the
SNLI, CoLA, and DWMW17 datasets that, when
dropped out, cause the greatest decrease in the V-
information estimate. These are token-level arte-
facts of each class in the dataset. In the DWMW17
hate speech detection dataset, racial and homopho-
bic slurs are artefacts of hate speech, while ableist
and sexual slurs are artefacts of offensive speech.
In-group AAVE terms are also predictive of of-
fensive speech in DWMW17 even when they are
used non-offensively, hinting at possible bias in the
dataset (Sap et al., 2019). In CoLA, auxiliary verbs
and prepositions are artefacts of ungrammatical
sentences; grammatical sentences don’t have any
artefacts. For SNLI, we recover many of the token-
level artefacts found by Gururangan et al. (2018)
using descriptive statistics—even uncommon ones,
such as ‘cat’ for contradiction.

E Relation to Dataset Cartography

Figure 7: Relationship between PVI and the train-
ing dynamics-based data map (Swayamdipta et al.,
2020) for SNLI held-out (test) set, computed for the
DistilBERT-base architecture. As in , Y -axis corre-
sponds to confidence, i.e. the mean probabilities of
the true class across training epochs, and X-axis cor-
responds to variability, i.e. the standard deviation of
the true class probabilities across the same. Colors in-
dicate binned values of PVI. PVI estimates track closely
with confidence.

Figure 7 shows that PVI values track closely
to the confidence axis of a SNLI-DistilBERT-base
data map5 (Swayamdipta et al., 2020). Data maps
and PVI estimates offer orthogonal perspectives to
instance difficulty, the former capturing behavior
of instances as training proceeds. Moreover, V-
information can estimate dataset difficulty as an
aggregate (§2), which is not the case for training
dynamics metrics, which offer only point estimates.
Both approaches can be helpful for discovering
data artefacts. Predictive V-information estimates,
however, offer the unique capability of transform-
ing the input to discover the value of certain at-
tributes in an efficient manner.

5Data maps were originally plotted on training data; how-
ever, they can be plotted on held-out data by computing
training dynamics measures on the same, after every train-
ing epoch.



hypothesis premise label PVI

A man plays the trombone on the sidewalk. Twenty five people are marching. N -9.966
A person is watching TV. A woman in a striped shirt holds an infant. N -9.612
A person embraces the cold A person swimming in a swimming pool. N -9.152
Women are playing ping pong. Women enjoying a game of table tennis. E -8.713
A boy alien dressed for summer in a green shirt and
kahki shorts

A boy dressed for summer in a green shirt and kahki
shorts extends food to a reindeer in a petting zoo.

E -8.486

Two snowboarders race. Two skateboarders, one wearing a black t-shirt and
the other wearing a white t-shirt, race each other.

E -8.087

The woman is not laughing. An Asian woman dressed in a colorful outfit laugh-
ing.

E -7.903

An older gentleman in overalls looks at the camera
while he is building a stained red deck in front of a
house.

An older gentleman looks at the camera while he is
building a deck.

E -7.709

The bandana is expensive. A man wearing black pants, an orange and brown
striped shirt, and a black bandanna in a "just thrown
a bowling ball" stance.

C -7.685

Two girls kiss. Two girls kissing a man with a black shirt and brown
hair on the cheeks.

C -7.582

Table 3: The 10 hardest (lowest PVI) instances in the SNLI test set, according to BERT-base. ‘E’ denotes entailment,
‘N’ neutral, and ‘C’ contradiction.

Attribute Transformation Transformed Input

Original PREMISE: I am a dog. HYPOTHESIS: The dog is brown.
Token Identity shuffle tokens randomly PREMISE: am dog I a . HYPOTHESIS: brown the dog is .
Length replace each token with # PREMISE: # # # # # HYPOTHESIS: # # # # #
Hypothesis only include hypothesis HYPOTHESIS: I am a dog.
Premise only include premise PREMISE: The dog is brown.
Overlap hypothesis-premise overlap dog

Table 4: Given an NLI instance (see ‘Original’), each transformation isolates some attribute from the input. The
headers ‘PREMISE’ and ‘HYPOTHESIS’ were added by us to transform the two sentence inputs into a single text
input for all models that were evaluated.



BERT-base

Epoch/Epoch 1 2 3 5 10

1 1.000 0.908 0.871 0.838 0.762
2 0.908 1.000 0.929 0.883 0.795
3 0.871 0.929 1.000 0.879 0.796
5 0.838 0.883 0.879 1.000 0.833
10 0.762 0.795 0.796 0.833 1.000

BART-base

Epoch/Epoch 1 2 3 5 10

1 1.000 0.925 0.885 0.853 0.754
2 0.925 1.000 0.952 0.906 0.807
3 0.885 0.952 1.000 0.914 0.814
5 0.853 0.906 0.914 1.000 0.862
10 0.754 0.807 0.814 0.862 1.000

DistilBERT-base

Epoch/Epoch 1 2 3 5 10

1 1.000 0.928 0.884 0.828 0.766
2 0.928 1.000 0.952 0.890 0.825
3 0.884 0.952 1.000 0.900 0.819
5 0.828 0.890 0.900 1.000 0.860
10 0.766 0.825 0.819 0.860 1.000

GPT2

Epoch/Epoch 1 2 3 5 10

1 1.000 0.931 0.887 0.855 0.747
2 0.931 1.000 0.961 0.918 0.813
3 0.887 0.961 1.000 0.933 0.827
5 0.855 0.918 0.933 1.000 0.874
10 0.747 0.813 0.827 0.874 1.000

Table 5: Cross-epoch Pearson correlation between PVI estimates made on the SNLI test set while finetuning various
models on the SNLI training set. The estimates are stable: when an instance is easy(difficult) early on, it generally
remains easy(difficult). For all models studied, the cross-epoch correlation does not dip below 0.80 for the first
five epochs.



DWMW17 (Davidson et al., 2017)

Hate Speech Offensive Neither

faggots (3.844) retards (2.821) lame (4.426)
fag (3.73) nigs (2.716) clothes (0.646)
faggot (3.658) negro (2.492) dog (0.616)
coons (3.53) nig (2.414) cat (0.538)
niggers (3.274) cunts (2.372) iDntWearCondoms (0.517)
queer (3.163) pussies (2.29) thank (0.47)
coon (3.137) queer (2.213) kick (0.423)
nigger (3.094) retarded (1.997) 30 (0.345)
dyke (3.01) cunt (1.919) football (0.334)
fags (2.959) bitches (1.858) soul (0.323)

SNLI (Bowman et al., 2015)

Entailment Neutral Contradiction

nap (3.256) tall (4.246) Nobody (7.258)
bald (3.183) naked (2.193) not (4.898)
crying (2.733) indoors (1.724) no (4.458)
Woman (2.517) light (1.442) naked (3.583)
asleep (2.482) fun (1.318) crying (2.938)
sleeping (2.416) bed (1.006) indoors (2.523)
soda (2.267) motorcycle (0.993) vegetables (2.295)
bed (2.136) works (0.969) sleeping (2.293)
not (2.111) race (0.943) jogging (2.17)
snowboarder (2.099) daughter (0.924) cat (2.092)

CoLA (Warstadt et al., 2018)

Grammatical Ungrammatical

will (0.267) book (2.737)
John (0.168) is (2.659)
. (0.006) was (2.312)
and (-0.039) of (2.308)
in (-0.05) to (1.972)
’ (-0.063) you (1.903)
to (-0.195) be (1.895)
of (-0.195) in (1.618)
that (-0.379) did (1.558)
the (-0.481) The (1.427)

Table 6: Token-level annotation artefacts in each dataset. These are the tokens whose omission leads to the greatest
average increase in conditional entropy for each class (given in parentheses).


