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Motivation

Smoothed Inverse Frequency (SIF)

• Arora et al. (2017) proposed a sentence embedding based on the

idea that words are generated by the random walk of a “discourse

vector”. This proved to be a strong baseline.

• They replaced the sequence of discourse vectors {ct} with a sin-

gle vector cs. Words could also be produced by chance or by a

“common discourse vector” c0 responsible for frequent words:

〈c0,cs, p(w) ,cs,cs〉 −→ The quick brown fox jumps.

• The MAP estimate of a sentence embedding cs for a sentence s

with words {w} is calculated in two stages, SIF weighting (W)

and common component removal (R):

W: c̃s =
1

|s| ∑w∈s

a

p(w)+a
· vw

R: cs = c̃s−projc0
c̃s

where a is a hyperparameter, p(w) is the word frequency, and the

first singular vector of all {c̃s} is used as the estimate for c0.

Shortcomings of SIF

• Due to the log-linear word production model (i.e., p(w|ct) ∝

exp(〈vw,ct〉)), word vector length has a confounding effect.

x

y

ch = z

cg

For example, despite h = 〈z,z〉 and g = 〈x,y〉, p(h|ch)≈ p(g|cg),

simply because ‖x‖= ‖y‖> ‖z‖.

• There is a hyperparameter a that needs tuning, which requires

labelled data.

Approach

Angular Distance-based Word Production

• We replace the underlying log-linear word production model

with an angular distance-based one:

p(w|ct) ∝ 1−
arccos(cos(vw,ct))

π

• The angular distance between two vectors is equivalent to the

geodesic distance between them on the unit sphere:

cs

vw

Unsupervised Smoothed Inverse Frequency (uSIF)

•The MAP estimate of cs is calculated in two stages, uSIF

weighting (U) and partial common component removal (P):

U: c̃s =
1

|s| ∑w∈s

a

p(w)+ 1
2
a
· vw

P: cs = c̃s−
m

∑
i=1

λi projc′i
c̃s

where a,{λ1, ..λm} are hyperparameters and {c′1, ...,c
′
m} are m

common discourse vectors.

•{c′1, ...,c
′
m} are estimated as the first m singular vectors of all {c̃s}

and λi is estimated as the proportion of variance explained by its

corresponding singular vector c′i.

•Hyperparameter a can also be estimated directly, using the word

frequency, average sentence length n, and vocabulary size |V|:

α =
∑w∈V 1

[
p(w)> 1−

(
1− 1

|V|

)n]

|V|

a =
2(1−α)

α|V|

Results

•Average results on textual similarity (Pearson’s r× 100), senti-

ment classification, and entailment tasks. The highest score in

each column is in bold.
Model STS’12 STS’13 STS’14 STS’15 SICK14

Wieting et al. (2016) - unsupervised

PP 58.7 55.8 70.9 75.8 71.6

PP-XXL 61.5 58.9 73.1 77.0 72.7

Arora et al. (2017) - weakly supervised

GloVe+WR 56.2 56.6 68.5 71.7 72.2

PSL+WR 59.5 61.8 73.5 76.3 72.9

Conneau et al. (2017) - unsupervised (transfer learning)

InferSent (AllSNLI) 58.6 51.5 67.8 68.3 -

InferSent (SNLI) 57.1 50.4 66.2 65.2 -

Wieting and Gimpel (2017) - unsupervised

ParaNMT BiLSTM Avg. 67.4 60.3 76.4 79.7 -

ParaNMT Trigram-Word 67.8 62.7 77.4 80.3 -

Our Approach - unsupervised

GloVe+UP 64.9 63.6 74.4 76.1 73.0

PSL+UP 65.8 65.2 75.9 77.6 72.3

ParaNMT+UP 68.3 66.1 78.4 79.0 73.5

Model SST SICK-R SICK-E

ParaNMT BiLSTM AVG (Wieting and Gimpel (2017)) 82.8 85.9 83.8

ParaNMT+WR (Arora et al. (2017)) 80.5 83.9 80.9

ParaNMT+UP (ours) 80.7 83.8 81.1

BiLSTM-Max (on AllNLI) (Conneau et al. (2017)) 84.6 88.4 86.3

BYTE mLSTM (Radford et al. (2017)) 91.8 79.2 -

Conclusion

•uSIF with partial common component removal is a tough-to-

beat, simple, and completely unsupervised baseline for sentence

embeddings.

•Future work may involve using better hyperparameter estima-

tions and incorporating more information into the embedding

(e.g., word order).
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